Transitioning from big data to collective intelligence.
Today, cloud-based big data systems face enormous challenges of Privacy, Latency and Power Consumption
The Problem
Of existing AI Platform
Privacy
Existing Big Data & AI platforms can’t learn without uploading data.
Latency
Big Data can’t be uploaded at once, making real-time computing an impossibility or slowness.
Energy
Transferring & processing big data in centralized clouds consumes massive amounts of energy.
Cost
Utilizing big data centers and huge computation resources leads costly operation and management.
The Problem
Of existing AI Platform
Data
Privacy
Big Data & AI platforms can’t learn while simultaneously preserving user privacy.
Apple Kills
IDFA
In early 2021 Apple will automatically opt users out of sharing device IDs (IDFA), disrupting the $80B mobile ad ecosystem
Google Depreciates Cookie
Chrome will join Safari and Firefox in blocking 3rd-Party Cookies in 2022, leaving the industry scrambling for options

The Solution
Reinvent the framework of existing AI
TieSet Inc. is developing a paradigm-shifting AI platform that achieves privacy preserving, only intelligence sharing frameworks which also solve the fundamental problems of high latency and utilizing huge data centers and computation resources. Our customers will significantly benefit from our platform in many ways to realize AI-empowered applications and systems as we can enable new business areas where privacy has been a very serious issue, drastically improve communication and computation efficiencies, and reduce management and maintenance costs of big data systems.
Product & Service
STADLE – The Next Generation AI Platform

Privacy-preserving
AI - data remains at local user devices

Intelligence sharing
with decentralized federated learning - not collecting big data

Auditable
architecture providing AI forensics

Scalable
for more than 10K devices in minutes

5G friendly
edge-computing empowered
Want to achieve 100% Data Privacy, Low Latency (1/10000 in transferred data) and No Centralized Power CONSUMPTION?
Use Cases
Privacy-Safe Ad Targeting Intelligent Dynamic Ad Delivery for the Cookieless Future
TieSet’s patented Decentralized Federated Learning framework enables intelligent ad targeting, without dependence on identifiers like the cookie or mobile device ID. User data stays with the owner, training models on the edge device, and only resulting intelligence is shared.
Consumer sentiment is driving a privacy revolution, with regulations gaining momentum worldwide, and major platforms responding by removing identifiers or requiring users to opt-in to identification. Publishers report earning only 50-70% CPMs on anonymized traffic compared to impressions with a cookie, but by 2022, no major browsers will continue supporting this outdated technology. In the mobile ecosystem, Apple is already moving to automatically opt users out of sharing the IDFA (Identifier for Advertisers), on which app campaign targeting relies.
Such changes in the ecosystem tend to drive more dollars toward the walled gardens, but independent players can compete. Continue driving top CPMs for publishers by delivering the results advertisers expect in a sustainable, ad-supported, privacy-protected internet.
Smart Robotics Learning Robotic manipulation from distributed robotic arm clusters using Federated Learning.
Grasping and manipulation in robots require extensive data from the real world of objects with different shapes and sizes and from various environments. In the current approach, robotic arms acquire grasping data in a single facility to train a centralized model. (e.g. Google Robotic Farm) While this approach leads to good results, acquiring data is time consuming and expensive resulting in a non-scalable process for a single company (e.g. Amazon), so this framework does not make general manipulators better. We propose to use Federated Learning to decentralized the learning of such robots.
WE’RE INNOVATORS IN AI & DISTRIBUTED SYSTEMS
Our Team
Partners



BLOG
Latest Updates




