Our Technology

Reinvent the framework
of existing AI platforms

Meet Next Generation of AI Platform – STADLE

STADLE Intelligence Management Platform (IMP) enables data to stay local, while users' model is shared

 

STADLE: Scalable, Traceable, Asynchronous, Decentralized Federated Learning Platform

Key Components

Edge ML JS Module

Federated Learning

Server Side
User Model Database

The Economy Impact

Key Result

0 %
Data Privacy
1/ 0
in transferred data
Low Latency
0 %
Power Consumption

Enable New Business, Improve Efficiency, and Save Money

Enabling New Business

. Privacy-preserving AI is the only way to create AI diagnosis business in Medical Record Learning
. Personal home robots need privacy-preserving AI to learn and improve capabilities

Improve Efficiency: Self-Driving Car

. Before: Upload 1GB per second, 10 TB per day
. After: Upload only AI models 500MB per hour, 1.5 GB per day
. About 6000 times efficient than current cloud-based solution

Saving on Cloud Data Center Cost

. Investment: $200K STADLE License vs. $1M for 1,000 sq. ft. datacenter
. Return: Annually save $800K on datacenter + network only for 1,000 sq. ft.

Technologies in Place

Privacy-Preserving AI

With the rapid growth of Artificial Intelligence technologies, concerns over consumer privacy have been increased to a large extent, especially in areas such as healthcare, home appliances, private pictures, and videos that user’s privacy is essential. To address privacy concerns, privacy communities must bring their knowledge to the machine learning field. Many privacy-enhancing techniques concentrated on allowing multiple users to collaboratively train ML models without exchanging local data. TieSet will lead the area of distributed AI so that a wide variety of people could benefit from the true power of AI.

Finger touch smartphone screen with privacy protection
Robotic arms along assembly line in modern factory.

Federated Learning

Federated Learning (FL) has gained worldwide recognition after Google Research released a mobile application where all the training happens at mobile devices of users. The private data of users will not leave from distributed devices, and the local AI models are aggregated to provide collective intelligence. The cost to maintain big data is significantly reduced by FL, while the level of intelligence is not compromised. FL can be applied not only to mobile services but also to all services where customers’ privacy comes into the picture. TieSet has succeeded in developing the world’s first fully decentralized federated learning technology.

Deep Reinforcement Learning

Control systems today are increasingly complex. Solving a control objective is a non-trivial optimization problem. A single robot may have dozens of independently controlled motors. A smart building may have hundreds of air-conditioning components. On top of that, each component may be different from one application to another due to wear and tear and manufacturing defects. An optimal solution may be intractable. And a one-size-fits-all solution may forego efficiency. Deep Reinforcement Learning learns by doing. Each interaction with the environment improves the AI controller’s knowledge. Over time it is able to produce a solution tailored to each specific application. A tailored AI can save costs and improve safety.

Robot's hands typing on keyboard
thumb

Transfer Learning

When data is limited, Transfer Learning (TL) aims at improving performance in the accuracy or training time of an AI model in a target domain by using knowledge contained in a different but related source domain. With TL we can deploy your AI solution faster and more efficiently by reusing previously generated models. Additionally, a system can learn a set of completely new tasks from the combination of previously acquired models by using a proprietary model synthesis engine.

Blockchain Technologies

Blockchain is an emerging technology that offers a solution for various data transaction problems in society with solid crypto and security mechanisms. We have been among the first people who have intensively integrated the multiple frameworks of AI into the blockchain domain to create advanced decentralized applications.

The chain with data. 3D illustration